Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116324, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636260

RESUMO

Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.

2.
Front Neurol ; 15: 1301208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385040

RESUMO

Migraine is a common neurological disorder that affects more than one billion people worldwide. Recent genome-wide association studies have identified 123 genetic loci associated with migraine risk. However, the biological mechanisms underlying migraine and its relationships with other complex diseases remain unclear. We performed a phenome-wide association study (PheWAS) using UK Biobank data to investigate associations between migraine and 416 phenotypes. Mendelian randomization was employed using the IVW method. For loci associated with multiple diseases, pleiotropy was tested using MR-Egger. Single-cell RNA sequencing data was analyzed to profile the expression of 73 migraine susceptibility genes across brain cell types. qPCR was used to validate the expression of selected genes in microglia. PheWAS identified 15 disorders significantly associated with migraine, with one association detecting potential pleiotropy. Single-cell analysis revealed elevated expression of seven susceptibility genes (including ZEB2, RUNX1, SLC24A3, ANKDD1B, etc.) in brain glial cells. And qPCR confirmed the upregulation of these genes in LPS-treated microglia. This multimodal analysis provides novel insights into the link between migraine and other diseases. The single-cell profiling suggests the involvement of specific brain cells and molecular pathways. Validation of gene expression in microglia supports their potential role in migraine pathology. Overall, this study uncovers pleiotropic relationships and the biological underpinnings of migraine susceptibility.

3.
J Agric Food Chem ; 72(2): 1361-1375, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166381

RESUMO

Light affects the morphology and physiology of Pleurotus ostreatus. However, the underlying molecular mechanism of this effect remains unclear. In this study, a label-free comparative proteomic analysis was conducted to investigate the global protein expression profile of the mycelia and fruiting bodies of P. ostreatus PH11 growing under four different light quality treatments. Among all the 2234 P. ostreatus proteins, 1349 were quantifiable under all tested conditions. A total of 1100 differentially expressed proteins were identified by comparing the light group data with those of the darkness group. GO and KEGG enrichment analyses indicated that the oxidative phosphorylation, proteasome, and mRNA surveillance pathways were the most related pathways under the light condition. qRT-PCR verified that the expression of the white collar 1 protein was significantly enhanced under white light. Additionally, glutamine synthetase and aldehyde dehydrogenase played important roles during light exposure. This study provides valuable insight into the P. ostreatus light response mechanism, which will lay the foundation for improved cultivation.


Assuntos
Pleurotus , Carpóforos , Micélio , Proteômica
4.
Korean J Physiol Pharmacol ; 27(6): 513-520, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884283

RESUMO

Cornuside is a secoiridoid glucoside compound extracted from the fruits of Cornus officinalis. Cornuside has immunomodulatory and anti-inflammatory properties; however, its potential therapeutic effects on diabetic nephropathy (DN) have not been completely explored. In this study, we established an in vitro model of DN through treating mesangial cells (MMCs) with glucose. MMCs were then treated with different concentrations of cornuside (0, 5, 10, and 30 µM). Cell viability was determined using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays. Levels of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1ß were examined using enzyme-linked immunosorbent assay. Reverse transcription quantitative real-time polymerase chain reaction and Western blotting were performed to detect the expression of AKT and nuclear factor-kappa B (NF-κB)-associated genes. We found that cornuside treatment significantly reduced glucose-induced increase in MMC viability and expression of pro-inflammatory cytokines. Moreover, cornuside inhibited glucose-induced phosphorylation of AKT and NF-κB inhibitor alpha, decreased the expression of proliferating cell nuclear antigen and cyclin D1, and increased the expression of p21. Our study indicates that the anti-inflammatory properties of cornuside in DN are due to AKT and NF-κB inactivation in MMCs.

5.
Research (Wash D C) ; 6: 0149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234604

RESUMO

Although neuroelectrochemical sensing technology offers unique benefits for neuroscience research, its application is limited by substantial interference in complex brain environments while ensuring biosafety requirements. In this study, we introduced poly(3-hexylthiophene) (P3HT) and nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) to construct a composite membrane-modified carbon fiber microelectrode (CFME/P3HT-N-MWCNTs) for ascorbic acid (AA) detection. The microelectrode presented good linearity, selectivity, stability, antifouling, and biocompatibility and exhibited great performance for application in neuroelectrochemical sensing. Subsequently, we applied CFME/P3HT-N-MWCNTs to monitor AA release from in vitro nerve cells, ex vivo brain slices, and in vivo living rat brains and determined that glutamate can induce cell edema and AA release. We also found that glutamate activated the N-methyl-d-aspartic acid receptor, which enhanced Na+ and Cl- inflow to induce osmotic stress, resulting in cytotoxic edema and ultimately AA release. This study is the first to observe the process of glutamate-induced brain cytotoxic edema with AA release and to reveal the mechanism. Our work can benefit the application of P3HT in in vivo implant microelectrode construction to monitor neurochemicals, understand the molecular basis of nervous system diseases, and discover certain biomarkers of brain diseases.

6.
Front Microbiol ; 14: 1137162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032898

RESUMO

Lyophyllum decastes, also known as Luronggu in China, is a culinary edible and medicinal mushroom that was widely cultivated in China in recent years. In the present study, the complete high-quality genome of two mating compatible L. decastes strain was sequenced. The L. decastes LRG-d1-1 genome consists of 47.7 Mb in 15 contigs with a contig N90 of 2.08 Mb and 14,499 predicted gene models. Phylogenetic analysis revealed that L. decastes exhibits a close evolutionary relationship to the Termitomyces and Hypsizygus genus and was diverged from H. marmoreus ~ 45.53 Mya ago. Mating A loci of L. decastes compose of five and four HD genes in two monokaryotic strains, respectively. Mating B loci compose of five STE genes in both two monokaryotic strains. To accelerate the cross-breeding process, we designed four pairs of specific primers and successfully detected both mating types in L. decastes. As a wood-rotting mushroom, a total of 541 genes accounting for 577 CAZymes were identified in the genome of L. decastes. Proteomic analysis revealed that 1,071 proteins including 182 CAZymes and 258 secreted enzymes were identified from four groups (PDB, PDB + bran, PDB + cotton hull, and PDB + sawdust). Two laccases and a quinone reductase were strongly overproduced in lignin-rich cultures, and the laccases were among the top-3 secreted proteins, suggesting an important role in the synergistic decomposition of lignin. These results revealed the robustness of the lignocellulose degradation capacity of L. decastes. This is the first study to provide insights into the evolution and lignocellulose degradation of L. decastes.

7.
J Fungi (Basel) ; 9(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36983535

RESUMO

Fusarium wilt is a severe and worldwide disease in potato cultivation. In this study, Fusarium foetens was first identified as the pathogen of potato wilt. Bacillus subtilis SF1 has the potential for controlling potato wilt induced by F. foetens, resulting in a mycelium growth inhibition of 52.50 ± 2.59% in vitro and a significant decrease in incidence rate by 45.56% in vivo. This research highlighted the antifungal activity of surfactin from B. subtilis SF1 and attempted to reveal the unknown antifungal mechanisms. Surfactin inhibited F. foetens mycelium growth beyond the concentration of 20 µg/µL. Surfactin-treated mycelium appeared to have morphological malformation. Surfactin enhanced reduced glutathione production and caused the increase in values of the extracellular fluids in OD260 and OD280. Surfactin induced differential protein expression and changed the genes' transcription levels. Surfactin binds to fungal DNA via groove-binding mode, with a binding constant of Kb 2.97 × 104 M-1. Moreover, B. subtilis SF1 harbored genes encoding plant-promoting determinants, making potato seedlings grow vigorously. The results will help provide a comprehensive understanding of the mechanisms of surfactin against filamentous fungi and the application of surfactin-producing microbial in the biocontrol of plant pathogenic fungi.

8.
J Fungi (Basel) ; 9(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36836339

RESUMO

(1) Background: The Hypsizygus marmoreus is a popular edible mushroom in East Asian markets. In a previous study, we reported the proteomic analyses of different developmental stages of H. marmoreus, from primordium to mature fruiting body. However, the growth and protein expression changes from scratching to primordium are unclear. (2) Methods: A label-free LC-MS/MS quantitative proteomic analysis technique was adopted to obtain the protein expression profiles of three groups of samples collected in different growth stages from scratching to the tenth day after scratching. The Pearson's correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene Ontology (GO) analysis was performed to divide the DEPs into different metabolic processes and pathways. (3) Results: From the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Compared with the Rec stage, 218 highly expressed proteins were identified in the Knot stage. Compared with the Pri stage, 217 highly expressed proteins were identified in the Rec stage. Compared with the Pri stage, 53 highly expressed proteins were identified in the Knot stage. A variety of the same highly expressed proteins were identified in these three developmental stages, including: glutathione S-transferase, acetyltransferase, importin, dehydrogenase, heat-shock proteins, ribosomal proteins, methyltransferase, etc. The key pathways in the development of H. marmoreus are metabolic process, catabolic process, oxidoreductase activity and hydrolase activity. DEPs in the Knot or Pri stages compared with the Rec stage were significantly decreased in the metabolic-, catabolic- and carbohydrate-related process; and the oxidoreductase, peptidase, and hydrolase activity, which can serve as targets for selectable molecular breeding in H. marmoreus. A total of 2000 proteins were classified into eight different modules by WGCNA, wherein 490 proteins were classified into the turquoise module. (4) Conclusions: Generally, from the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Importin, dehydrogenase, heat-shock proteins, ribosomal proteins, transferases were all highly expressed in these three developmental stages. DEPs in the Rec stage compared with the Knot or Pri stages were significantly enriched in the metabolic-, catabolic- and carbohydrate-related process; and in oxidoreductase, peptidase and hydrolase activities. This research contributes to the understanding of the mechanisms of the development changes before primordium of H. marmoreus.

9.
J Fungi (Basel) ; 9(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36836380

RESUMO

Oudemansiella raphanipes, considered as a well-known culinary edible mushroom with a high content of natural bioactive substances, is widely cultivated in China with the commercial name Changgengu. However, due to the lack of genomic data, molecular and genetic study on O. raphanipes is rare. To obtain a comprehensive overview of genetic characteristics and enhance the value of O. raphanipes, two mating-compatible monokaryons isolated from the dikaryon were applied for de novo genome sequencing and assembly using Nanopore and /or Illumina sequencing platforms. One of the monokaryons, O. raphanipes CGG-A-s1, was annotated with 21,308 protein-coding genes, of which 56 were predicted to be involved in the biosynthesis of secondary metabolites such as terpene, type I PKS, NRPS, and siderophore. Phylogenetic and comparative analysis of multiple fungi genomes revealed a close evolutionary relationship between O. raphanipes and Mucidula mucid based on single-copy orthologous protein genes. Significant collinearity was detected between O. raphanipes and Flammulina velutipes on the synteny of inter-species genomes. 664 CAZyme genes in CGG-A-s1 were identified with GHs and AAs families significantly elevated when compared with the other 25 sequenced fungi, indicating a strong wood degradation ability. Furthermore, the mating type locus analysis revealed that CGG-A-s1 and CGG-A-s2 were conserved in the gene organization of the mating A locus but various in that of the mating B locus. The genome resource of O. raphanipes will provide new insights into its development of genetic studies and commercial production of high-quality varieties.

10.
Front Microbiol ; 14: 1259101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38163081

RESUMO

Cyclosporine A (CsA) is a secondary cyclopeptide metabolite produced by Tolypocladium inflatum that is widely used clinically as an immunosuppressant. CsA production and mycelial growth differed when T. inflatum was cultured in different carbon source media. During early fermentation, CsA was preferred to be produced in fructose medium, while the mycelium preferred to accumulate in sucrose medium. On the sixth day, the difference was most pronounced. In this study, high-throughput comparative proteomics methods were applied to analyze differences in protein expression of mycelial samples on day 6, revealing the proteins and mechanisms that positively regulate CsA production related to carbon metabolism. The differences included small molecule acid metabolism, lipid metabolism, organic catabolism, exocrine secretion, CsA substrate Bmt synthesis, and transcriptional regulation processes. The proteins involved in the regulation of mycelial growth related to carbon metabolism were also revealed and were associated with waste reoxidation processes or coenzyme metabolism, small molecule synthesis or metabolism, the stress response, genetic information or epigenetic changes, cell component assembly, cell wall integrity, membrane metabolism, vesicle transport, intramembrane localization, and the regulation of filamentous growth. This study provides a reliable reference for CsA production from high-efficiency fermentation. This study provides key information for obtaining more CsA high-yielding strains through metabolic engineering strategies.

11.
Int J Biol Macromol ; 223(Pt A): 1320-1334, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36395936

RESUMO

Light is important environmental stress that influences the growth, development, and metabolism of Hypsizygus marmoreus (white var.). However, the molecular basis of the light effect on H. marmoreus remains unclear. In this study, a label-free comparative proteomic analysis was applied to investigate the global protein expression profile of H. marmoreus mycelia growing under white, red, green, and blue light qualities and darkness (control). Among 3149 identified proteins in H. marmoreus, 2288 were found to be expressed in all tested conditions. Data of Each light quality was compared with darkness for further analysis, numerous differentially expressed proteins (DEPs) were identified and the white light group showed the most. All the up-regulated and down-regulated DEPs were annotated and analyzed with the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The KEGG enrichment analysis revealed that light stress was associated with primary metabolism, glycolysis/gluconeogenesis, MAPK, proteasome, and carbohydrate-active enzyme pathways. This study advances valuable insights into the molecular mechanisms underlying the role of different light qualities in mushroom growth and development.


Assuntos
Agaricales , Proteômica , Micélio , Luz
12.
Extremophiles ; 26(3): 28, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35964293

RESUMO

L-Carnitine is widespread in nature, but little information is available on its metabolism and physiological functions in moderate halophiles. In this study, we found that Chromohalobacter salexigens DSM 3043 could utilize carnitine not only as a nutrient, but also as an osmolyte. When grown at 37 °C under salt-stress conditions, the strain utilized carnitine as an osmoprotectant by enzymatically converting it into GB. When grown at low and high temperature, both carnitine and its metabolic intermediate GB were simultaneously accumulated intracellularly, serving as cryoprotectants and thermoprotectants. The genes (csal_3172, csal_3173, and csal_3174) which were predicted to participate in L-carnitine degradation to GB were deleted to construct the corresponding mutants. The effects of salinity and temperature on the growth rates and cytoplasmic solute pools of the C. salexigens wild-type and mutant strains were investigated. 13C-NMR analysis revealed that GB was still detected in the Δcsal_3172Δcsal_3173Δcsal_3174 mutant grown in a defined medium with added DL-carnitine, but not with L-carnitine, indicating that an unidentified D-carnitine degradation pathway exists in C. salexigens. Taken together, the data presented in this study expand our knowledge on carnitine metabolism and its physiological functions in C. salexigens exposed to single or multiple environmental abiotic stress.


Assuntos
Carnitina , Chromohalobacter , Adaptação Fisiológica , Carnitina/metabolismo , Carnitina/farmacologia , Chromohalobacter/genética , Temperatura
13.
Front Microbiol ; 13: 943452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935205

RESUMO

Five new chloro-azaphilones, chaetofanixins A-E (1-5), and five known analogs (6-10) were isolated and identified from the hadal trench-derived fungus Chaetomium globosum YP-106. The structure of chaetofanixin E (5) is unique and interesting, bearing a highly rigid 6/6/5/3/5 penta-cyclic ring system, which is first encountered in natural products. The structures of these compounds, including absolute configurations, were determined based on the spectroscopic analysis, electronic circular dichroism (ECD) calculations, and analysis of biogenetic origins. Compounds 1-7 significantly promoted angiogenesis in a dose-dependent manner, and thus, these compounds might be used as promising molecules for the development of natural cardiovascular disease agents.

14.
J Fungi (Basel) ; 8(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887408

RESUMO

BACKGROUND: Pleurotus ostreatus is a popular edible mushroom in East Asian markets. Research on the responses of P. ostreatus under different carbon dioxide concentrations is limited. METHODS: Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of P. ostreatus fruiting body pileus collected under different carbon dioxide concentrations. The Pearson correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene ontology analysis was performed to divide the DEPs into different metabolic processes and pathways. RESULTS: The expansion of stipes was inhibited in the high CO2 group compared with that in the low CO2 group. There were 415 DEPs (131 up- and 284 down-regulated) in P. ostreatus PH11 treated with 1% CO2 concentration compared with P. ostreatus under atmospheric conditions. Proteins related to hydrolase activity, including several amidohydrolases and cell wall synthesis proteins, were highly expressed under high CO2 concentration. Most of the kinases and elongation factors were significantly down-regulated under high CO2 concentration. The results suggest that the metabolic regulation and development processes were inhibited under high CO2 concentrations. In addition, the sexual differentiation process protein Isp4 was inhibited under high CO2 concentrations, indicating that the sexual reproductive process was also inhibited under high CO2 concentrations, which is inconsistent with the small fruiting body pileus under high CO2 concentrations. CONCLUSIONS: This research reports the proteome analysis of commercially relevant edible fungi P. ostreatus under different carbon dioxide concentrations. This study deepens our understanding of the mechanism for CO2-induced morphological change in the P. ostreatus fruiting body, which will facilitate the artificial cultivation of edible mushrooms.

15.
BMC Public Health ; 22(1): 1102, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655296

RESUMO

BACKGROUND: Albumin has multiple functions and is used in the clinical assessment of liver function, kidney function and nutritional status. However, few epidemiological studies have evaluated the association between sleep duration and albumin. Therefore, we carried out a cross-sectional study to address this issue. The aim of the study was to investigate the association between sleep duration and albumin in American adults based on the NHANES (National Health and Nutrition Examination Survey). METHODS: A total of 9,973 participants aged [Formula: see text] 20 years were included in this study from NHANES 2015-2018. Weighted data were calculated according to analytical guidelines. Linear regression models and smooth curve fitting were used to assess and describe the relationship between sleep duration and albumin. The inflection point was determined by a two-step recursive method. Moreover, univariate and stratified analyses were performed. RESULTS: There was an inverted U-shaped association between sleep duration and albumin levels. Albumin levels were highest when the sleep duration was 7.5 h. Compared to 7-8 h of sleep, short sleep duration was linked to lower albumin levels [sleep duration [Formula: see text] 5 h: ß [Formula: see text]-1.00, 95% CI (-1.26, -0.74), P < 0.0001]. Compared to 7-8 h of sleep, long sleep duration was related to lower albumin levels [sleep duration [Formula: see text] 9 h: ß [Formula: see text] -0.48, 95% CI (-0.68, -0.27), P < 0.0001]. CONCLUSIONS: Sleep duration had an inverted U-shaped relationship with albumin, with short or long sleep duration associated with significantly lower albumin levels.


Assuntos
Transtornos do Sono-Vigília , Sono , Adulto , Idoso , Albuminas , Estudos Transversais , Humanos , Inquéritos Nutricionais , Estados Unidos/epidemiologia
16.
J Fungi (Basel) ; 8(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205854

RESUMO

Stropharia rugosoannulata, also known as Daqiugaigu in China, is a well-known edible mushroom that has been widely cultivated in China in recent years. Many studies have focused on its nutrients, bioactive compounds, and lignin degradation capacity, although there are few molecular and genetic breeding studies due to the lack of genomic information. Here, we present the 47.9 Mb genome sequence of an S. rugosoannulata monokaryotic strain (A15), which has 20 contigs and an N50 of 3.64 Mb, which was obtained by a combination of Illumina and Nanopore sequencing platforms. Further analysis predicted 12,752 protein-coding genes, including 486 CAZyme-encoding genes. Phylogenetic analysis revealed a close evolutionary relationship between S. rugosoannulata and Hypholoma sublateritium, Psilocybe cyanescens, and Galerina marginata based on single-copy orthologous genes. Proteomic analysis revealed different protein expression profiles between the cap and the stipe of the S. rugosoannulata fruiting body. The proteins of the stipe associated with carbon metabolism, energy production, and stress-response-related biological processes had higher abundance, whereas proteins involved in fatty acid synthesis and mRNA splicing showed higher expression in the cap than in the stipe. The genome of S. rugosoannulata will provide valuable genetic resources not only for comparative genomic analyses and evolutionary studies among Basidiomycetes but also for alleviating the bottlenecks that restrict the molecular breeding of this edible mushroom.

17.
Nat Prod Res ; 36(6): 1529-1535, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33771063

RESUMO

Two new lanostane-type triterpenoids, ganoderenicfys A (1) and B (2), together with six related known terpenoids (3-8), were isolated and identified from the fruiting body of Ganoderma applanatum. The structures of these compounds were established on the basis of detailed interpretation of their NMR and HRESIMS data. The absolute configurations of 1 and 2 were determined by quantum chemical electronic circular dichroism (ECD) calculations. All of the isolated compounds were evaluated for their proangiogenic activities in a transgenic fluorescent zebrafish model. Compounds 1-6 displayed dose-dependently proangiogenic activity in a PTK787-induced vascular injury zebrafish model, while compounds 1, 2 and 4 significantly promoted the angiogenesis. This is the first report for proangiogenic activities of lanostane-type triterpenoids.


Assuntos
Ganoderma , Triterpenos , Animais , Carpóforos/química , Ganoderma/química , Estrutura Molecular , Triterpenos/química , Peixe-Zebra
18.
J Fungi (Basel) ; 7(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947046

RESUMO

(1) Background: The white Hypsizygus marmoreus is a popular edible mushroom in East Asia markets. Research on the systematic investigation of the protein expression changes in the cultivation process of this mushroom are few. (2) Methods: Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of six groups of samples collected in different growth stages. A total of 3468 proteins were identified. The UpSetR plot analysis, Pearson correlation coefficient (PCC) analysis, and principal component (PC) analysis were performed to reveal the correlation among the six groups of samples. The differentially expressed proteins (DEPs) were organised by One-way ANOVA test and divided into four clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to divide the DEPs into different metabolic processes and pathways in each cluster. (3) Results: The DEPs in cluster 1 are of the highest abundance in the mycelium and are mainly involved in protein biosynthesis, biosynthesis of cofactors, lipid metabolism, spliceosome, cell cycle regulation, and MAPK signaling pathway. The DEPs in cluster 2 are enriched in the stem and are mainly associated with protein biosynthesis, biosynthesis of cofactors, carbon, and energy metabolism. The DEPs in cluster 3 are highly expressed in the primordia and unmatured fruiting bodies and are related to amino acids metabolism, carbon and carbohydrate metabolism, protein biosynthesis and processing, biosynthesis of cofactors, cell cycle regulation, MAPK signaling pathway, ubiquitin-mediated proteolysis, and proteasome. The DEPs in cluster 4 are of the highest abundance in the cap and are mainly associated with spliceosome, endocytosis, nucleocytoplasmic transport, protein processing, oxidative phosphorylation, biosynthesis of cofactors, amino acids metabolism, and lipid metabolism. (4) Conclusions: This research reports the proteome analysis of different developmental stages during the cultivation of the commercially relevant edible fungi the white H. marmoreus. In the mycelium stage, most of the DEPs are associated with cell proliferation, signal response, and mycelium growth. In the primordia and unmatured fruiting bodies stage, the DEPs are mainly involved in biomass increase, cell proliferation, signal response, and differentiation. In the mature fruiting body stage, the DEPs in the stem are largely associated with cell elongation and increase in biomass, and most of the DEPs in the cap are mainly related to pileus expansion. Several carbohydrate-active enzymes, transcription factors, heat shock proteins, and some DEPs involved in MAPK and cAMP signaling pathways were determined. These proteins might play vital roles in metabolic processes and activities. This research can add value to the understanding of mechanisms concerning mushroom development during commercial production.

19.
Front Microbiol ; 12: 694874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447357

RESUMO

Indole-3-acetic acid (IAA), known as a common plant hormone, is one of the most distributed indole derivatives in the environment, but the degradation mechanism and cellular response network to IAA degradation are still not very clear. The objective of this study was to elucidate the molecular mechanisms of IAA degradation at the protein level by a newly isolated strain Pseudomonas sp. LY1. Label-free quantitative proteomic analysis of strain LY1 cultivated with IAA or citrate/NH4Cl was applied. A total of 2,604 proteins were identified, and 227 proteins have differential abundances in the presence of IAA, including 97 highly abundant proteins and 130 less abundant proteins. Based on the proteomic analysis an IAA degrading (iad) gene cluster in strain LY1 containing IAA transformation genes (organized as iadHABICDEFG), genes of the ß-ketoadipate pathway for catechol and protocatechuate degradation (catBCA and pcaABCDEF) were identified. The iadA, iadB, and iadE-disrupted mutants lost the ability to grow on IAA, which confirmed the role of the iad cluster in IAA degradation. Degradation intermediates were analyzed by HPLC, LC-MS, and GC-MS analysis. Proteomic analysis and identified products suggested that multiple degradation pathways existed in strain LY1. IAA was initially transformed to dioxindole-3-acetic acid, which was further transformed to isatin. Isatin was then transformed to isatinic acid or catechol. An in-depth data analysis suggested oxidative stress in strain LY1 during IAA degradation, and the abundance of a series of proteins was upregulated to respond to the stress, including reaction oxygen species (ROS) scavenging, protein repair, fatty acid synthesis, RNA protection, signal transduction, chemotaxis, and several membrane transporters. The findings firstly explained the adaptation mechanism of bacteria to IAA degradation.

20.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32631860

RESUMO

Chromohalobacter salexigens DSM 3043 can grow on N,N-dimethylglycine (DMG) as the sole C, N, and energy source and utilize sarcosine as the sole N source under aerobic conditions. However, little is known about the genes and enzymes involved in the conversion of DMG to sarcosine in this strain. In the present study, gene disruption and complementation assays indicated that the csal_0990, csal_0991, csal_0992, and csal_0993 genes are responsible for DMG degradation to sarcosine. The csal_0990 gene heterologously expressed in Escherichia coli was proven to encode an unusual DMG dehydrogenase (DMGDH). The enzyme, existing as a monomer of 79 kDa with a noncovalently bound flavin adenine dinucleotide, utilized both DMG and sarcosine as substrates and exhibited dual coenzyme specificity, preferring NAD+ to NADP+ The optimum pH and temperature of enzyme activity were determined to be 7.0 and 60°C, respectively. Kinetic parameters of the enzyme toward its substrates were determined accordingly. Under high-salinity conditions, the presence of DMG inhibited growth of the wild type and induced the production and accumulation of trehalose and glucosylglycerate intracellularly. Moreover, exogenous addition of DMG significantly improved the growth rates of the four DMG- mutants (Δcsal_0990, Δcsal_0991, Δcsal_0992, and Δcsal_0993) incubated at 37°C in S-M63 synthetic medium with sarcosine as the sole N source. 13C nuclear magnetic resonance (13C-NMR) experiments revealed that not only ectoine, glutamate, and N-acetyl-2,4-diaminobutyrate but also glycine betaine (GB), DMG, sarcosine, trehalose, and glucosylglycerate are accumulated intracellularly in the four mutants.IMPORTANCE Although N,N-dimethylglycine (DMG) dehydrogenase (DMGDH) activity was detected in cell extracts of microorganisms, the genes encoding microbial DMGDHs have not been determined until now. In addition, to our knowledge, the physiological role of DMG in moderate halophiles has never been investigated. In this study, we identified the genes involved in DMG degradation to sarcosine, characterized an unusual DMGDH, and investigated the role of DMG in Chromohalobacter salexigens DSM 3043 and its mutants. Our results suggested that the conversion of DMG to sarcosine is accompanied by intramolecular delivery of electrons in DMGDH and intermolecular electron transfer between DMGDH and other electron acceptors. Moreover, an unidentified methyltransferase catalyzing the production of glycine betaine (GB) from DMG but sharing no homology with the reported sarcosine DMG methyltransferases was predicted to be present in the cells. The results of this study expand our understanding of the physiological role of DMG and its catabolism to sarcosine in C. salexigens.


Assuntos
Chromohalobacter/genética , Genes Bacterianos , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Chromohalobacter/metabolismo , Teste de Complementação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...